
Algorithms and Data Structures in C

answers exam 11 April 2014

Gerard R. Renardel de Lavalette

Algorithms and Data Structures in C

problem 1

This problem is about binary trees defined by the following type definition:

typedef struct TreeNode *Tree;

struct TreeNode {

int item;

Tree leftChild, rightChild;

};

a. When is a binary tree a search tree?

b. Define the C function with prototype

Tree addInSearchTree(Tree t, int n);

that adds n to search tree t (provided n does not occur in t) while preserving the
search tree property. When n occurs in t, the returned tree is equal to the input tree.

Algorithms and Data Structures in C 1

problem 1

c. Define the C function with prototype

Tree removeFromSearchTree(Tree t, int n);

that removes n from t (provided n occurs in t) while preserving the search tree
property. When n does not occur in t, the returned tree is equal to the input tree.
You may use the function with prototype

int successor(Tree t);

(you do not have to define this function). Precondition for the function successor

is that t has a right child. The function successor returns the smallest integer m in
the subtree that has the right child of t as root, and it removes the node containing
m.

Algorithms and Data Structures in C 2

problem 1a

a. When is a binary tree a search tree?

A binary tree (containing integers in its nodes) is a search tree when it satisfies the
search tree property:

All nodes k with a value x satisfy: all values in the left subtree of k are smaller
than x, and all values in the right subtree of k are greater than x.

At the exam, about 80 % gave the wrong answer:

All nodes k with a value x satisfy: if k has a left child, its value is smaller than
x, and if k has a right child, its value is greater than x.

Algorithms and Data Structures in C 3

problem 1b

Tree addInSearchTree(Tree t, int n) {

if (t == NULL) {

t = malloc(sizeof(struct TreeNode));

assert(t != NULL);

t->item = n;

t->leftChild = NULL;

t->rightChild = NULL;

return t;

}

if (n < t->item) {

t->leftChild = addInSearchTree(t->leftChild,n);

} else if (t->item < n) {

t->rightChild = addInSearchTree(t->rightChild,n);

}

return t;

}

Algorithms and Data Structures in C 4

problem 1c

Tree removeFromSearchTree(Tree t, int n) {

Tree t1;

if (t == NULL) return NULL;

if (t->item < n) {

t->rightChild = removeFromSearchTree(t->rightChild,n);

return t;

}

if (n < t->item) {

t->leftChild = removeFromSearchTree(t->leftChild,n);

return t;

}

if (t->rightChild == NULL) {

t1 = t->leftChild;

free(t);

return t1;

}

t->item = successor(t);

return t;

}

Algorithms and Data Structures in C 5

problem 2

The C code below defines types and functions for the implementation of lists of
integers. However, there are 4 errors in the code so that functions do not work
properly and/or memory leaks may occur. Find these errors, indicate what is wrong
and repair them.

1 typedef struct ListNode *List;

2

3 struct ListNode {

4 int item;

5 List next;

6 };

7

8 List addItem(int n, List li) {

9 List newList = malloc(sizeof(struct ListNode));

10 assert(newList !=NULL);

11 newList ->item = n;

12 newList ->next = li;

13 return newList;

14 }

Algorithms and Data Structures in C 6

problem 2

16 List removeFirstNode(List li) {

17 List returnList;

18 if (li == NULL) {

19 printf("list empty\n");

20 abort();

21 }

22 returnList = li->next;

23 free(li);

24 return returnList;

25 }

Algorithms and Data Structures in C 7

problem 2

27 List insertInOrder(List li , int n) {

28 /* li is sorted in ascending order */

29 List li1;

30 if (li ->item > n || li == NULL) { /* ERROR 1: wrong order */

31 return addItem(n,li);

32 }

33 li1 = li;

34 while (li1 ->next != NULL && (li1 ->next)->item < n) {

35 li1 = li1 ->next;

36 } /* ERROR 2: see below */

37 return li;

38 }

add between 36 and 37: li1->next = addItem(n,li1->next);

alternative: replace 33 to 36 by li1->next = insertInOrder(li1->next,n);

Algorithms and Data Structures in C 8

problem 2

39 int removeLastOcc(List *lp , int n) {

40 /* NB: lp is a reference pointer!

41 * the function removes the last occurrence of n from *lp

42 * it returns 1 when an occurrence of n has been removed ,

43 * otherwise 0

44 */

45 if (*lp == NULL) {

46 return 0;

47 }

48 if ((*lp)->item == n) { /* ERROR 3: swap 48-51 with 52-54 */

49 *lp = removeFirstNode (*lp);

50 return 1;

51 }

52 if (removeLastOcc (&((*lp)->next),n)) {

53 return 1;

54 }

55 return 0;

56 }

Algorithms and Data Structures in C 9

problem 2

58 List removeAllOcc(List li , int n) {

59 /* remove all occurrences of n and return the resulting list */

60 if (li == NULL) {

61 return NULL;

62 }

63 if (li ->item == n) {

64 return removeAllOcc(li ->next ,n); /* ERROR 4: see below */

65 } else {

66 li->next = removeAllOcc(li->next ,n);

67 return li;

68 }

69 }

Memory leak! replace 64 by return removeAllOcc(removeFirstNode(li),n);

Algorithms and Data Structures in C 10

problem 3

This problem is about tries.

a. Let W be a collection of words. Define: T is a standard trie for W.

b. Describe in pseudocode an algorithm to search for a word in a trie.

c. Explain what a suffix trie is, and how it can be used to search for a pattern in a
text.

Algorithms and Data Structures in C 11

problem 3a

Let W be a collection of words. Define: T is a standard trie for W.

The root is empty, and every other node contains a letter;

the children of a node contain different letters and are in alphabetical order;

the branches from the root correspond exactly with the words in W .

Algorithms and Data Structures in C 12

problem 3b

Describe in pseudocode an algorithm to search for a word in a trie.

algorithm Search(T,w)
input standard trie T, word w
output Yes if w occurs in T, otherwise No
k ← root of T
while w not empty do

x ← first letter of w
w ← w minus x
if k has no child containing x then

return No
k ← child of k that contains x

if k is a leaf then
return Yes

else
return No

Algorithms and Data Structures in C 13

problem 3c

Explain what a suffix trie is, and how it can be used to search for a pattern in a text.

A suffix trie for a text T is a trie for the collection S of suffixes (end segments) of T.
Searching for a pattern in T can be done by applying a modification of the algorithm
of 3b to the suffix trie. The modification consists in replacing the last 4 lines by

return Yes

As a consequence, the algorithm searches whether w is the prefix of a word in the
trie. We use the following fact:

every pattern (substring) of a string is the prefix of a suffix.

Algorithms and Data Structures in C 14

problem 4

Consider the following algorithm:

algorithm BreadthFirstSearch(G,v)
input connected graph G with node v;

all nodes and edges are unlabeled
result labeling of the edges of G with NEW and OLD;

the edges with label NEW form a spanning tree of G,
and all nodes are visited (and labeled VISITED)

. . .

Algorithms and Data Structures in C 15

problem 4

. . .
give v the label VISITED
create an empty queue Q
enqueue(v)
while Q not empty do

u ← dequeue()
forall e incident with u do

if e has no label then
w ← the other node incident with e
if w has no label then

give e the label NEW
give w the label VISITED

else
give e the label OLD

Algorithms and Data Structures in C 16

problem 4

a. What is a spanning tree of a connected graph?

b. The algorithm contains one error. Indicate what the error is and repair it.

c. Modify the corrected algorithm into an algorithm FindPath(G,v,w) that finds a
path from v to w in graph G.

d. Argue that the path found by FindPath has minimal length. Here the length of a
path is the number of edges in it.

Algorithms and Data Structures in C 17

problem 4a

What is a spanning tree of a connected graph?

A spanning tree of a connected graph is

a subgraph of that graph,

that contains all nodes of the graph, and

is a tree (i.e. connected and without cycles).

Algorithms and Data Structures in C 18

problem 4b

The algorithm contains one error. Indicate what the error is and repair it.

“enqueue(w)” is missing:

. . .
w ← the other node incident with e
if w has no label then

give e the label NEW
give w the label VISITED
enqueue(w)

else
give e the label OLD

Algorithms and Data Structures in C 19

problem 4c

algorithm FindPath(G,v,w)
input connected graph G with nodes v and w
output a stack containing the nodes on a path from v to w
if v=w then

return stack containing only v
. . .

x ← the other node incident with e
if x = w then

S ← empty stack
push w on S
while x 6= v do

x ← parent(x)
push x on S

return S
if w has no label then

parent(x) ← u
. . .

Algorithms and Data Structures in C 20

problem 4d

Argue that the path found by FindPath has minimal length. Here the length of a
path is the number of edges in it.

The algorithm FindPath first finds all nodes x one step from v. For these nodes (v,x)
is a shortest path, and they are all shortest paths from v with length 1.

Then it finds all the ‘new’ nodes y that are one step from the nodes at distance 1.
These nodes obtain a path (v,x,y). There is no path (v,y) for y is a ‘new’ node. So
(v,x,y) is a shortest path. The paths thus obtained are all shortest paths from v with
length 2.

And so on.

Conclusion: every path found by FindPath is a shortest path from v.

Algorithms and Data Structures in C 21

	problem 1
	problem 1
	problem 1a
	problem 1b
	problem 1c
	problem 2
	problem 2
	problem 2
	problem 2
	problem 2
	problem 3
	problem 3a
	problem 3b
	problem 3c
	problem 4
	problem 4
	problem 4
	problem 4a
	problem 4b
	problem 4c
	problem 4d

